Solar for Low Income Families
DC Small-Scale Solar Initiative (DCSI)

George Nichols
DC Sustainable Energy Utility
What Is the Sustainable Energy Utility?

- Clean & Affordable Energy Act (2008)
- Ratepayer-funded, privately operated
- Performance-based contract to DDOE
- Designed to help District households, businesses, and institutions save energy and money through energy efficiency and renewable energy programs.
Why low-income solar in the District?

- Recent efforts focused on “motivated” participants
 - Local Community Solar Co-ops and DDOE
 - Renewable Energy Incentive Program (REIP)
- Previous efforts increased participation…but
- Significant differences in accessibility to renewables Wards 7 and 8
- Launched DC small scale low income solar initiative in spring 2012 (DCSI)
Clean Energy for ALL

- Wards 7 & 8 very underserved by renewable technologies
- DC SEU expanded opportunities for both solar PV for homeowners and jobs for residents
- 87 installations on low-income homes completed by Fall 2012
Program Overview

- To reduce burden of cost to participate in renewable energy technology in low income communities
- Initial installation goal = 20 systems
- Final installation = 87 systems
- Keys to Success
 - Education and Outreach
 - Leveraging Resources and Programs
 - Partnering with Trusted Leaders
 - Establish Process for Early Feedback
Financial Mechanisms

- 3 different approaches to financing projects **with common elements**
 - All solar panels are owned by homeowners
 - SRECs are owned temporarily by installer or 3rd party financier
 - No out-of-pocket costs to homeowner
Results

• The program:
 - Demonstrated that implementation in low income communities was a reality
 - Demonstrated broad support
 - Tested local contracting capability
 - Identified tools of choice = education, marketing, trusted partners, supporting organizations, and financial incentives
 - Incorporated job training
 - Allowed for creativity
 - Sought to provide all residents an opportunity to enjoy benefits from new technology of renewal energy
Here Comes the Sun: Solar Market Potential and Technological Solutions

• What role should leasing and PPA strategies play in program policy?
• What are barriers to widespread adoption of solar PV/thermal in low income markets?
• What roles should DDOE and DCSEU play in strengthening the market for renewables?
• What would constitute an exciting vision for renewables in DC?
Role of Government

- Risk reduction is one of government’s most important roles in promoting private investment in renewable technology.
 - resource evaluation and market evaluation;
 - providing access to expertise;
 - eliminating obstacles to markets; and
 - project oversight and evaluation.
What are the policy implications?

- Proactive Education and Outreach Activities
- Planning
- Technical Resource Support
- Permitting Process Improvements
Policy Drivers for Recommendations

- **Proactive Education and Outreach Activities**
 - Create a city-wide educational campaign and electronic resource to inform consumers about solar technology and its benefits;
 - In coordination with/and support of existing Community Solar organizations
 - Prepare collateral documentation and other materials

- **Planning**
 - Market Characterization
 - Roadmap Platform
 - Facilitate Solar Planning Across Agencies
 - Consider investing in innovation to create a scientific base which systematically feeds into a process for new technology applications
Policy Drivers for Recommendations

• **Technical Resource Center**
 – PV Solar Database Development and Management
 – Third Party Technical Review of Analysis and Recommendations
 • Early consultation on site selection
 • Maximization of energy efficiency opportunities
 – QA/QC

• **Permitting Process Improvements**
 – DCRA, Planning and Zoning Standards
 – Interconnection Processes
Vision for Renewables

• Renewable Energy Applications in District will be more diversified
 – Roof Top PV and Solar Thermal more abundant
 – Small-Scale Wind Power Turbines
 – Neighborhood scale renewable energy systems
• Renewables providing job opportunities
• Greater collaboration and cooperation on bulk procurement and clean energy generation opportunities
• Practical applications of a diversified renewables strategy achieving 50% of District’s energy supply as envisioned in Sustainable DC
Thank You!

George L. Nichols
Policy and Public Affairs Advisor
DC Sustainable Energy Utility (DCSEU)
80 M Street SE, Suite 310
Washington, DC 20003
gnichols@dcseu.com
(202) 677-4820
www.dcseu.com
Solar Water Heating: DC Market

Zach Axelrod – CEO
Skyline Innovations

GUA RANTEED SAVINGS THROUGH GREEN ENERGY
About Skyline Innovations

- Skyline makes saving money on energy easy for small- to medium-sized businesses
- Rather than changing customer behavior, deliver savings through technology and by reducing customers’ energy prices
- Our innovation is a guaranteed savings model backed by patent-pending software

- NO CAPITAL INVESTMENT
- GUARANTEED SAVINGS
- NO ONGOING EFFORT

customer value proposition
Skyline History

- August 2009: Solar water heating guaranteed savings in DC
- 2010: Project process automation and billing software; expand to MD
- 2011: Industry-leading $30M tax equity project fund
- 2012: Enter CA with LACI partnership; largest developer/operator of commercial SWH in US
- 2013: Expansion to Hawaii, Puerto Rico

To date, Skyline has completed 118 projects and offset over 6,400 MWH
Skyline as a “utility” sells price indexed energy

- Guaranteed savings model backed by proprietary, patent-pending software
- No customer capital investment; turnkey program with monitoring and M&V
- Savings are measured, not baselined + projected
DC Market

- Renewable Portfolio Standard enacted in 2005
 - Standard: 20% by 2020
 - Solar: 2.5% by 2023
- Solar Renewable Energy Credits (SRECs)
- Renewable Energy Incentive Program (REIP)
- Renewable Investment Tax Credit (RITC)
- Local Incentives / Programs
- Accelerated Depreciation
Multifamily Needs Remain Unmet

Questions?
1. **SOLAR COLLECTORS**
 Rooftop solar collectors turn light from the sun into heat energy.

2. This heat is transferred to a running loop of water and stored in the Skyline tank.

3. **SOLAR HEATED WATER OUT**
 This heats the municipal water coming into your existing water heater, which means your water heater does not need to turn on.
How We Do It: Product, Process, Technology

Skyline Model

Continuous Optimization + Automation

Extensive Monitoring + Analytics

Acquire Customer → Project Database → Process Database → Automated Files → Task Assignment + Management → Metrics + Decision Support

Upsell → Inventory Database → Business Intelligence

Metering System → OLTP

External Data → OLAP

Billing + Presentation → Performance Views → Analytical Tools
Here Comes the Sun: Photovoltaics

Photovoltaic market potential and technological solutions
PV Frequently Asked Questions

- What will PV cost me?
- Why does it cost that much?
- What is happening to reduce that cost?
- How can I pay for it?
- What obstacles will I encounter?
- How can PV reach more people?
- What’s to come for PV? In the District?
What will PV cost me?

- Two methods of presenting cost
 - Cost per Watt (\$/W) and % Offset
 - Based on nameplate DC rating
 - Cost per kWh (\$/kWh)
 - Incorporates design, site conditions, etc
- Price Tag vs Post-Incentive Cost
- Supplemental Costs
 - Building upgrades
 - Solar access – vegetation control – trees
- Residential – $3.25–4.50/W
- Commercial – $2.75–4.00/W
What will PV cost me?

$ / Watt and % Offset
- Nameplate DC rating,
 - 10 kW = 10,000 W
- Annual energy (kWh) generation
 - 12,000 kWh (1.2x Watts)
- Compare to 12 month kWh usage
 - 16,000 kWh
- Cost = $37,500
- $ / Watt = $3.75
- % Offset = 75%

$/ kilowatt-hour
- Annual kWh generation
 - 12,000 kWh
- System lifespan
 - 25 years (module warranty)
- Degradation
 - 0.8% per year
- Cost = $37,500
- $0.14 / kWh = 14¢ / kWh
- Compare to utility rate
Why does it cost that much?

- PV Modules
- Inverters
- Racking
- Monitoring
- BOS
- Labor
- Design/Permit
- Operational
- Profit & Overhead
What is happening to reduce cost?

- **PV Modules**
 - Mono-Si – Improvements in manufacturing, efficiency
 - Thin film – Thin frames, glass, etc. Need more area, racking, BOS
- **Inverters**
 - Transformerless, ungrounded – Lower weight, higher efficiency
- **Racking**
 - Ease of installation, speed.
 - Race to the fewest components
 - Lightweight ballast trays, large span rails.
 - Roofing integration.
- **Monitoring**
 - $1–3k for revenue grade. Required for certain sizes
What is happening to reduce cost?

- **BOS**
 - 1,000V systems increase circuit sizes, fewer circuits, less wire/conduit, etc

- **Labor**
 - Efficiency. Solar experience. Quality designs to eliminate work stoppage and field changes

- **Design/Permit**
 - Kitted/pre-designed systems
 - Efficient permit process. OTC review of simple projects, clear requirements published, eliminate unnecessary obstacles, online permitting, establish appropriate permit fees, FREE?

- **Operational**
 - Efficient scheduling, equipment rentals, safety planning

- **Profit & Overhead**
 - Simplify project processes. Administrative positions for incentive, permit, interconnection paperwork.
 - Cost of sales – lead acquisition, referrals, Angie’s List, social
How can I pay for it?

- Cash Purchase
- Loans
 - PACE – Property Assessed Clean Energy – loan is attached to the property rather than an individual, paid back long term as part of property taxes
- Lease
 - Little/no upfront cost
 - Rent equipment and reap the benefits
- Power Purchase Agreement (PPA)
 - No upfront cost.
 - 3rd party owns system on customer’s property and sells power at fixed rate
 - 2nd utility company
- Community Ownership / Virtual Net-Metering
How can I pay for it?

- Federal Tax Credit
 - 30% of system cost thru 2016
- Corporate Depreciation
 - Accelerated & Bonus Depreciation thru 2013
 - Typically amounts to 25–30% of system costs over 5 yrs
- Renewable Energy Incentive Program (REIP)
 - $0.50/W, up to $10,000
- Solar Renewable Energy Credits (SRECs)
 - Alternate Compliance Payment = $500/MWh thru 2016
 - Brokering will pay less than $500 depending on market
 - Options can amount to $0.80–1.20/W
- Personal Property Tax Exemption
- Net Metering
What obstacles will I encounter?

- **Roof condition**
 - PV will last minimum 25 years. Will the roof?
 - Replacement/remediation costs expected
 - New roof? Warranty maintenance requirements. Manufacturer limit roof penetrations/weight

- **Building framing**
 - Addition of 3–10 lbs/sq.ft. and wind uplift forces
 - Will the roof hold? Are upgrades necessary?
 - Structural engineering analysis

- **Electrical system**
 - Is it compatible for a code compliant PV interconnection?
 - Service voltage and amperage configurations may limit size/type of PV system
How can PV reach more people?

- PV may not work because...
 - Financing
 - Shading
 - Vegetation
 - Adjacent properties
 - Roof space
 - Roof condition
 - Building framing
 - Electrical system

- You may have options...
 - Sell SRECs upfront, PPA, lease
 - Remove/trim trees
 - Building upgrades
 - Community Solar
How can PV reach more people?

- Reaching Low-Income Neighborhoods
 - Education and awareness of property owners and financers
 - What is PV? How does it work? How can I pay for it?
 - Solar is not a luxury item (pool)
 - Solar is a building system (AC, furnace, etc)
 - Local financial institutions support
 - Hesitant to lend, but if they can pay PEPCO bill on time, they can make loan payment on time
 - Deferred maintenance – fixing and old, leaky roof may not be highest priority
 - Community solar / virtual net metering
How can PV reach more people?

- Community Solar and Virtual Net Metering
 - Single PV system installed within District
 - Large commercial/government/non-profit property owner offers/leases roof space for installation
 - Take on roof integrity liability
 - District should incentivize this
 - Individuals purchase shares of system
 - Thru virtual net metering, energy generated is credited to individuals PEPCO accounts
 - Property owners that could not otherwise Go Solar will have the opportunity thru such a program
 - Overall system cost is reduced
 - (1) 100kW vs (20) 5kW project
What’s to come for PV?
In the District?

- Technology
 - 1000V systems
 - Transformerless, ungrounded inverters
 - AC modules/microinverters. Enphase now has serious competition
 - Modules – gradually improving efficiency
 - Don’t get too excited about solar technological breakthroughs (nanocells, PV paints, PV clothing, etc)
 - Green Roof Integrated PV (GRIPV) – Incorporate PV system into vegetative roof. Vegetation cools roof, PV operates more efficiently at lower temperature
What’s to come for PV?
In the District?

- **Market**
 - Prices dropped significantly 2008–2012. Less volatile decline. Grid parity this decade? By 2016 ITC expiration and ACP decrease $500 to $350?

- **Policy/Regulation**
 - Community Renewables Energy Act of 2013 – should pass this legislative session
 - Incorporates Virtual Net Metering into existing net metering requirements
 - DCRA improvements in permit process. New requirements soon.
Average Installed Cost/Watt

Blended Average System Price

<table>
<thead>
<tr>
<th>Year</th>
<th>Installed Price ($W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>$12.00</td>
</tr>
<tr>
<td>1999</td>
<td>$10.00</td>
</tr>
<tr>
<td>2000</td>
<td>$8.00</td>
</tr>
<tr>
<td>2001</td>
<td>$6.00</td>
</tr>
<tr>
<td>2002</td>
<td>$4.00</td>
</tr>
<tr>
<td>2003</td>
<td>$2.00</td>
</tr>
<tr>
<td>2004</td>
<td>$1.00</td>
</tr>
<tr>
<td>2005</td>
<td>$0.50</td>
</tr>
<tr>
<td>2006</td>
<td>$0.25</td>
</tr>
<tr>
<td>2007</td>
<td>$0.10</td>
</tr>
<tr>
<td>2008</td>
<td>$0.05</td>
</tr>
<tr>
<td>2009</td>
<td>$0.02</td>
</tr>
<tr>
<td>2010</td>
<td>$0.01</td>
</tr>
<tr>
<td>2011</td>
<td>$0.00</td>
</tr>
<tr>
<td>Q1-03 2012</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

LBNL "Tracking the Sun IV" SEIA/GTM Research

ProspectSolar
Solar PV Market and Grid Parity

Figure 97: Solar PV Market, The US, LCOE Comparison with Retail Electricity Prices, 2011-2025

Source: GBI Research, 2011
SRECs and the DC Market

- With an ACP at $500, SRECs have traded in DC for as much as $470 in June/July
- SRECs will NOT trade above ACP value, PEPCO will simply pay (less) for the compliance payment
- ACP of $500 is through 2016. Now is ideal time to invest.
- The ACP will decline beginning in 2017, lowering SREC values.

<table>
<thead>
<tr>
<th>Year</th>
<th>ACP per missed REC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thru 2016</td>
<td>$500</td>
</tr>
<tr>
<td>2017</td>
<td>$350</td>
</tr>
<tr>
<td>2018</td>
<td>$300</td>
</tr>
<tr>
<td>2019–2020</td>
<td>$200</td>
</tr>
<tr>
<td>2021–2022</td>
<td>$150</td>
</tr>
<tr>
<td>2023+</td>
<td>$50</td>
</tr>
</tbody>
</table>
Questions?

- Kevin Graves
- Prospect Solar
- www.prospect solar.com
- gravesk@prospect solar.com
References

- SMA America, www.smaamerica.com – Inverter images
- Green Roof Technology, www.greenrooftechnology.com
- ZinCo Green Roof, www.zinco-greenroof.com – Green roof images
- Database of State Incentive for Renewable Energy (DSIRE), www.dsireusa.org
- SREC Trade, www.srectrade.com
- http://www.solarnavigator.net/images/pv_solar_module_efficiency_chart.jpg